
NEW STANDARD ACADEMY

Date: 24-11-25 CLASS: 11TH Time: 3 hours

PHYSICS

- 1. A plate of dimensions (4m × 4m) and 0.01 m away from a fixed plate moves at 0.4 m s⁻¹. A force of 1 N is required to maintain this speed. Determine the coefficient of viscosity of the fluid between the plates.
- 2. A fluid moves along a surface at a height 0.75 with a velocity of 3m s⁻¹ If the shearing stress is 3N m⁻² find the coefficient of viscosity.
- 3. A metal block of area 0.10m² is connected to a 0.010 kg mass via string that passes over an ideal pulley (considered massless and frictionless) as shown in figure. A liquid with film thickness of 0.30 mm is placed between the block and the table. When released the block moves to the right with constant speed of 0.085 m s⁻¹. Find the coefficient of viscosity of the liquid.

- 4. Find the velocity gradient between two layers of a liquid separated by a perpendicular distance of 1 mm and having a relative velocity of 0.05 m s⁻¹
- 5. A vessel containing alcohol is fitted horizontally with a capillary tube of radius 0.5 mm and length 0.2 m. The coefficient of viscosity of alcohol is 1.2×10^{-3} Pa s and its density is 800kg m⁻³ If the depth of capillary tube below the free surface of alcohol is 0.3 m, find the amount of alcohol flowing out in 5 minutes. Take g = 9.8m s^{-2}
- 6. Two balls A and B are dropped in a viscous medium of coefficient η . If the diameter of ball B is double the diameter

- of ball A, find the ratio of the terminal velocity of B to that of A. Assume that the densities of both balls are equal.
- 7. The terminal velocity of a copper ball of radius 2.0 mm falling through a tank of oil at 20°C is 6.5 cm s⁻¹. Compute the viscosity of the oil at 20°C Density of oil is 1.5×10^3 kg m³, density of copper is 8.9×10^3 kg m⁻³
- 8. What should be the maximum average velocity of flow of water through a tube of internal diameter 20 mm so that the flow is laminar? Viscosity of water is 1×10⁻³ Pas. Assume that Reynolds number for laminar flow of water is 1000
- 9. A fluid of coefficient of viscosity 0.56 Pa s and density 0.75 g cm³ flows through a pipe of diameter 10 mm with a velocity of 3ms ⁻¹ Find the Reynolds number for the flow of fluid. What is the type of flow?
- 10. Find the average velocity of flow of glycerine through a tube of diameter 10 mm so that the flow is (a) laminar (b) turbulent.

The viscosity of glycerine is 0.950 Pas and its specific gravity is 1.26.

CHEMISTRY

- 1. Assign oxidation number to the underlined elements in each of the following species:
 - (a) $H_4 \underline{P_2}O_7$
- (b) $K_2\underline{Mn}O_4$
- (c) Na <u>B</u> H₄
- (d) KAl(SO₄)2 .12 H₂O
- 2. What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results?
 - (a) KI₃
- (b) $H_2S_4O_6$
- (c) Fe₃O₄
- (d) CH₃CH₂OH
- (e) CH₃ COOH
- 3. Justify that the following reactions are predox reactions:
 - (a) $CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(g)$
 - (b) Fe_2O_3 (s) + $3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$

4. Fluorine reacts with ice and results in the change:
 H₂O(s)+F₂ (g) → HF(g) + HOF(g)

Justify that this reaction is a redox reaction.

- 5. While sulphur dioxide and hydrogen peroxide can act as an oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?
- 6. Justify giving reactions that among halogens, fluorine is the best oxidant and among hydrohalic compounds, hydroiodic acid is the best reductant?
- 7. Balance the following redox reactions by ion-electron method.
 - (a) $MnO_4^- + I^- \rightarrow MnO_2 + I_2$ (in basic medium)
 - (c) $H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + H_2O(I)$ (in acidic solution)
- Balance the following equation in basic medium by ion electron method and oxidation number method and identify the oxidising agent and the reducing agent.
 N₂H₄ +ClO₃⁻3 → NO + Cl⁻
- 9. Consider the elements: Cs, Ne, I and F;
 (a) Identify the element that exhibits only negative oxidation state.
 - (b) Identify the element that exhibits only positive oxidation state.
 - (c) Identify the element that exhibits both positive and negative oxidation states.
 - (d) Identify the element which exhibits neither the negative nor does the positive oxidation state.
- 10. Using the standard electrode potentials predict if the reaction between the following is feasible:

 Ag⁺ (aq) and Cu (s)

BIOLOGY

- 1. Draw label diagram ,TS of muscle
- 2. Give the characteristic feature of cardiac muscle
- 3. What is a sarcomere explain
- 4. Explain sliding mechanism of muscle fibre
- 5. How many bones are present in fore limb give the name
- 6. What is a joint give the example of ball and socket joint
- 7. How many number of vertebra present in cervical, thoracic, lumber, sacral and coxy reason of vertebral colum

- 8. Give the difference between fibrous and synovial joint with example
- 9. How many bones are present in cranium ,in face and ear,give name of ear bone.
- 10. What is the rib cage explain how many bones are present

MATH'S

- 1. The equation of the circle whose Centre is (1,-3) and which touches the line 2x-y-4=0 is
- 2. If the radius of the circle $x^2+y^2-18x+12y+k=0$ is 11 units then k=1
- 3. If the length of tangent drawn from the point (5,3) to the circle $x^2+y^2+2x+ky+17$ = 0 be 7 then k =
- 4. If OA and OB are the tangents to the circle $x^2+y^2-6x-8y+21=0$ drawn from the origin O thern AB=
- 5. Circl; $e^2 + y^2 4x 8y 5 = 0$ will intersect the line 3x 4y = m in two distinct points if
- 6. The area bounded by the circles $x^2 + y^2 = 1$, $x^2 + y^2 = 4$ and the pair of lines $\sqrt{3}(x^2 + y^2) = 4xy$, is equal to
- 7. The angle between the pair of tangents from the point (1,1/2)to the circ; le $x^2+y^2+4x+2y-4=0$ is
- 8. A pair of tangents are drawn to a unit circle with centre at the origin and these tangents intersect at A enclosing an angle of 60°. The area enclosed by these tangents and the arc of the circle is
- 9. The shortest distance from the line 3x + 4y= 25 to the circle $x^2 + y^2 = 6x - 8y$ is equal to
- 10. If the straight line ax + by = 2; $b \ne 0$, touches the circle $x^2 + y^2 2x = 3$ and is normal to the circle $x^2 + y^2 4y = 6$ then the values of a and b are